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1. INTRODUCTION
In this lecture we shall be concerned with stationary spatial patterns in bi-
stable systems described by the Eztended Fisher-Kolmogorov (EFK) equation

Ju v O%u 3

e el Tl 0. 1

ot 78z4+8m2+u o v (1)
This equation was proposed in 1987 by COULLET, ELPHICK & REPAUX 8],
and in 1988 by DEE & VAN SAARLOOS [11] as a generalization of the classical
Fisher-Kolmogorov (FK) equation
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which has played an important role in the studies of pattern formation in bi-
stable systems (cf. [2], [16], [20], [26], [27]). The term ”bi-stable” refers here to
the fact that the uniform states v = £1 are stable as solutions of the equation

d
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The EFK equation arises in the study of singular points (so called Lifshitz
points [14]) in phase transitions, and as the evolution equation in gradient
systems described by the energy functional

I(u) = /{%(u")2 + g(u')2 +F(w)}ds, >0, BER, (3)
where F' denotes the double-well potential
1
F(u) = (1 - u?). (4)
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We then obtain the EFK equation when we choose 3 = 1. Another important
application of this equation is found in the theory of instabilities in nematic
liquid crystals [5], [28].

In studies of second order materials [10], [18], [19], one also finds the func-
tional I(u). Here 8 < 0. The stationary points of I(u) are then equivalent to
the equilibrium solutions of the Swift-Hohenberg equation
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when « > 1 through a simple scaling of z, ¢ and u (see for instance [7], [9], and
the references therein).

In this paper we are interested in stationary spatial patterns which can
be described by the EFK equation. Thus, we are concerned with bounded
solutions u(z) of the equation

yu =u" +u—u® on R (6)

Related equations arise in the propagation of solitons in nonlinear optical
fibres with negative 41" order dispersion, which are described by the nonlinear
Schrédinger equation
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If one sets

u(e,t) = v(@)e™,  vER weR

then we obtain for v:
v — " — Wi+ 03 =0. (8)
The deflection of an asymmetrically supported strutt leads to the equation
u™ + Pu" +u—u? =0, P e R, (9)

which in recent years has been studied in a series of papers [1], [6], [4] by
Hamiltonian methods with a focus on homoclinic orbits (solitons).

Finally we mention an equation which has been studied in connection with
observed travelling waves observed in suspension bridges, such as the Golden

Gate bridge [17]:
u +cEu + (1 +u)y —1=0. (10)

The types of spatial patterns for the EFK equation we shall discuss here
will be

Kinks, that is heteroclinic orbits connecting the stable uniform states u =
—1 and v = +1.

Periodic patterns.

— Solitons, that is, homoclinic orbits to one of the uniform states.

Chaotic patterns, as conjectured in [8].
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2. STATIONARY SOLUTIONS
The spatial patterns which arise in the context of the FK equation (v = 0) are
bounded solutions of the equation

W 4+u—uP=0 on R

The spatial patterns which arise in the context of the FK equation are well
known and consist of kinks, which are odd, monotonone and given explicitly by
x
u(z) =+ tanh(—)
(z) 7))
and periodic solutions: for each u € (0,1) there exists a unique periodic solution
(modulo sign and translations) such that

max{|u(z)| :z € R} = /1 —/p <1

Here p is the value of the first integral:

—(u')? + %(1 —u?? =L (11)

Note that these periodic solutions have a single bump between zeros. Plainly,
w = 0 for kinks; for p ¢ [0,1) there are no nontrivial bounded solutions of (6).

Turning to the EFK equation, we consider bounded odd solutions of the
equation

yu’ =u" +u—u® on R (12)
in which v > 0. The first integral now becomes
1
2,yu/um _ ,y(uu)2 _ (ul)2 + 5(1 _ u2)2 — % (13)

We note that at v = % the nature of the critical points (u,u’,u"” u"") =
(£1,0,0,0) changes:

7 <

v >

= Im); =0,
= Im); #0,

00 |+—=00|—

} k=123, 4.

This critical value of v has a profound effect on the structure of the family of
stationary patterns.

About Kinks we find that if v < % there exists a unique monotone kink,
whilst if v > % there exist many kinks. Specifically, for any integer NV > 0 there
exists a kink with 2/N 4 1 zeros. These kinks all satisfy the universal bound:

lu(z)| < V2 for z€R (14)

About Periodic solutions, we find that for any v > 0 and any p € (0,1),
there exists a single bump periodic solution which, as with the FK equation,
has maxima below u = 1. However, for 4 = 0 new periodic solutions appear
when v > %: two branches of single bump periodic solutions u () bifurcate
from the unique odd monotone kink U at v = % and continue to exist for all
v > %. They have the properties
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0 < [u-(Mloo <1< Jup(1)]oo < V2.

In addition to these single bump periodic solutions, many multi bump periodic
solutions bifurcate from U at v = %.

With the methods of [22], single as well as multi bump Solitons tending to
u=1oru=—1asz — +oo, were recently shown to exist when v > %.

Finally, it was found that the EFK equation has odd chaotic stationary
patterns when v > % and p = 0. The graph of these stationary solutions has
an infinite sequence of local maxima tending to infinity and is characterized
by the position of the local maxima with respect to the level u = 1: above or
below. It is easily seen that maxima are always local and that they can never
lie on the line v = 1.

Let us denote the locations of the consecutive maxima on R* by &, k =
1,2,..., and let them be ordered so that & < &g41. With this sequence we
associate a symbol sequence o = (01,09, ...) in the following manner:

u(ép) >1 = op=1

> 1.
wEn) <1 = o =0 for k>1 (15)

It is shown in [23] that for v suffiently large and p = 0, there exists for
every symbol sequence (o) an odd solution u, of equation (6) on R of which
the maxima satisfy (15). These solutions u, all have the properties

ue(§p) >0 and wuy(mk) <—1 forevery k>1, (16)

where (n;,) denotes the sequence of consecutive minima on R, and so these
solutions oscillate around w = 0. Furthermore, if a and b are two consecutive
extrema, then

|us(a) —ug(b)| > 1. (17)

Recently is was shown in [15] that chaotic solutions, identified with the symbol

sequences defined above, even exist for all v > %. However, in this case,

the solutions do not have zeros between extrema and do not satisfy (16) and

(17).

3. OUTLINE OF THE METHOD
In this section we sketch the method used in [21], [22], [23], [24] to prove many of
the results outlined in Section 2. For simplicity we shall set p = 0. The method
is based on a shooting argument. Looking for odd solutions, we consider the
initial value problem
yul =u" +u—ud, x>0
(18)
u(0) =0, ¥/(0) = «, «v"(0) =0, u'"(0) = 3.

Without loss of generality we may set a > 0, and in view of the energy identity

(13) we find that
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5= 0e) = 5= (* - 3). (19)

where we have set 1 = 0.

Plainly, Problem (18) has for every @ > 0 a unique local solution u(z, @).
When looking for single bump periodic solutions, we seek a positive value of «
such that u(z, ) has the properties

u'(z,) >0 for 0<z<¢

w'(§,a)=0 and u"({,a)=0 (20)

for some finite £ = £(a) > 0. It is easily verified that a solution defined on
[0,€], which satisfies (18-20) can be extended to yield a periodic solution of
period 4£. Thus, we define

&(a) =sup{z >0:4'(-,a) >0 on [0,z)}.

This function has the following properties:

ProrosIiTION 3.1.Let v > %. Then for every a > 0, we have

£(a) < oo and u'(é(a),a) =0.

REMARK. If v < %, then £ = oo is possible, but only for the kink.
PROPOSITION 3.2. £ € C(RT).

When u" # 0, the continuity of £ follows from the Implicit Function Theorem
applied to the equation

uw'(€(a),a) = 0.

The points at which u"” = 0 are delicate. At these points, the energy identity
becomes
1

5(1 - ’11,2)2 = 07

and so we must have u = £1. A careful analysis shows that at these points &
is also continuous in «a.
To prove the existence of periodic solutions we now study the function

¢(a) £ u"(¢(a),a) on RF.
By Propositions 3.1 and 3.2, the function ¢ is well defined and continuous.
LEMMA 3.3. We have

(a) ¢(a) <0 for o small,
1

(b) o(a) <0 if azﬁ,
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PROOF. The first assertion follows at once from (19).

To prove the second assertion, we set o > % Then we see from the second
line in (18) that «"’'(0) > 0, and that if »"’(0) = 0, then »?(0) = 1. This means
that u” > 0 for 2 small and in fact, in view of the equation, that " > 0 as
long as w < 1. Therefore

w(€(a),a) >1 and u'(£(a),a) <0 if a> i (21)

V2

Let z1 be the point on [0,£], where w = 1. Then u”(21) > 0 whilst »"(£) <0,
so that there must be a point x5 € (z1,£) where v” = 0 and w" < 0. Since
u(wy) > 1, it follows from the differential equation that u®® < 0. Another
inspection of the differential equation shows that u” < 0, v’ < 0 and u®™ < 0
on (x2,£&]. This proves Part (b). a
We are now ready to prove that there exist periodic solutions with maxima
below u = 1 as well as periodic solutions with maxima above u = 1. Write

a; =sup{a® > 0:u(f(a),a) <1 for 0<a<a*} and wu; =u(,a).
It follows from the continuity of £(«) that «; is well defined, and that
w(@ =1 and ¢ar) = ul'(€) > 0. (22)

The last inequality follows from the fact that v}’ > 0 and that if u{" = 0, then
by uniqueness, u; = 1, which is not the case.

Since by Lemma 3.3(a), ¢(a) = u"'(0, @) < 0 for small values of «, it follows
from (22) and the continuity of £(«) that there exists an a_ € (0, ) such that

d(a) = u"(Ea),a) = . (23)

Thus u(z,a_) satisfies all of (18-20) and so is a periodic solution of equation

(6).

However, by Lemma 3.3(b) there also exists an ay € (a1, %) such that

Play) =u"(€(ay),ay) =0, (24)

so that the function u(z,ay) is also a periodic solution of equation of (6).
Observe that our construction implies that

max{u_(z) : z € R} <1< max{uy(z):z € R}.

More complicated periodic solutions can be constructed by following not only
the first critical point but also the second, the third and so on. For instance,
let

n=sup{z >¢:u(,a) <0 on (&)}

Then we follow the function

P(a) € u" (n(e), ).
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Since u'"(0,¢) — —o0 as a — 0 it is easily seen that u(n) < —1 for « suffiently
small. As « increases, u(n(«),«) passes through the line x = —1, say at a_;.
There we have

u(n(a—i),a-1) = -1, u"(nla-i),a_1) =0 and ¢(a_;)<0.

At o = ag we have u(z, ;) = 1 and u”(z,1) = 0. Here

n(ar) =¢(ar) andso Y(ar) > 0.

Thus, ¥(a—1) < 0 and ¥(a;) > 0. Therefore, there must exist a point oy €
(a—1,a1) such that ¥(ag) = 0 and hence u(z, ap) is a periodic solution which
is symmetric with respect to its second critical point. Note that

—1 < u(n(ap),ap) <0 < u(&(apn),ap) < 1.

All these inequalities are obvious from the construction, except the second
one, which requires some more detailed analysis. A numerical analysis of such
solutions was carried out in [3].

By applying this analysis in an iterative manner, using ideas of [12], [13], it
is possible to prove the existence of multi bump kinks and chaotic patterns, as
indicated in Section 2.
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